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Wigner equation for particles obeying an exclusion-inclusion principle
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We consider a nonlinear Schro¨dinger equation for particles obeying an exclusion-inclusion principle recently
proposed by us and derive, within the Wigner formalism, a generalized quantum phase-space transport equa-
tion. We calculate the\ expansion of this equation and study the quantum corrections, up to the\2 order, of
the finite temperature Thomas-Fermi phase-space distribution. The effects and the quantitative relevance of the
exclusion principle on the distribution function are considered for a system of fermionic particles in a harmonic
confining potential.@S1063-651X~98!10502-0#

PACS number~s!: 05.30.Fk, 03.65.2w, 05.20.2y
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I. INTRODUCTION

In recent years, great interest has been devoted to the
of quantum-mechanical phase-space distributions in m
areas of physics including quantum optics, statistical phys
nonlinear physics, chaotic systems, quantum cosmology,
lision processes@1–4#. In particular, in heavy-ion physics
several approaches based on collective and transport mo
~as, for instance, the hydrodynamics model, the intranuc
cascade model, the ‘‘hot spot’’ model and the molecular
namics! are frequently employed to understand the relev
phenomenology@5–9#.

The quantum many-body methods as the Hartree-F
and the random phase approximations or the time depen
Hartree-Fock theory are powerful algorithms and allow us
explain many experimental results. However, the numer
implementation to treat realistic situations with these theo
leads to excessively great computational times and effo
For this reason and to obtain a clearer interpretation of
results in many-body physics there is a rising interest in
semiclassical approach of quantum mechanics both for
stationary and for the nonequilibrium phenomena.

The Wigner formulation of quantum statistical mechan
respects the rules of quantum mechanics such as He
berg’s uncertainty principle and captures most features of
Boltzmann function, however, it does not contain quant
statistical or many-body effects due to the Pauli princip
Because the Wigner equation, which describes the quan
dynamics in the phase space, is deduced from the Sc¨-
dinger equation, to derive a quantum transport equat
which contains many-body or statistical effects, it is nec
sary to introduce these effects directly into the Schro¨dinger
equation.

Recently, a new treatment to take into account many-b
effects due to the Pauli principle has been considered@10#. In
this reference, starting from a classical Markovian proce
which obeys an exclusion-inclusion principle~EIP! acting in
the coordinate space and using Nelson’s stochastic quan
tion method, the following nonlinear Schro¨dinger equation
~NLSE! has been derived:
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W~r!5k
\2

4mF ¹x
2r

11kr
1

22kr

2r

~¹xr!2

~11kr!2G , ~2!

W~r,j !52k
\

2r
¹xS r j

11kr D , ~3!

and where the quantum currentj is given by

j52
i\

2m
~11kr!~c* ¹xc2c¹xc* !. ~4!

The potentialsW(r) andW(r,j ) are due to the presenc
of the EIP and, being functions of the particle dens
r(x,t)5uc(x,t)u2 and of the quantum currentj (x,t), intro-
duce complex nonlinearities in the Schro¨dinger equation.
The real parameterk ~which has the dimensions ofLd,
whered is the dimension of the space! characterizes the EIP
for k50 the EIP is absent and Eq.~1! becomes the standar
linear Schro¨dinger equation; for21<kr,0 the EIP is re-
duced to an exclusion principle while forkr.0 an inclusion
principle holds@10#.

Because the nonlinear potentials in the square bracke
Eq. ~1! contain the EIP, the solution of Eq.~1! can reproduce
an anyonlike particle behavior. The intermediate nature
bosons and fermions can be taken into account in the v
of the parameterk. In Ref. @10# it is shown that when the
potential is parabolic, the real part of the nonlinear poten
is reduced toW(r)52kE0r1(4kr13k2r2)V(x). The
first term of this potential appears in the Chern-Simons th
ries studying boson gasses with ad-function pairwise repul-
sion or attraction@11#; the term in the brackets is similar t
the one of the Eckhaus equation and describes a ga
bosons interacting with a two-body attractive and three-bo
repulsived-function interparticle potential@12#. The Eckhaus
potential is often used in studies of superfluidity@13#, super-
conductivity@14# and recently, of the Bose-Einstein conde
sation of trapped neutral atoms as, for instance,7Li, 23Na,
and 87Rb @15–18#.
1395 © 1998 The American Physical Society
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1396 57G. KANIADAKIS, A. LAVAGNO, AND P. QUARATI
The presence of the EIP does not change the usual in
pretation of the functionr as the particle density probabilit
and of the vectorj as the particle current probability, relate
to each other through the continuity equation

]r

]t
1¹x• j50. ~5!

The NLSE~1! conserves in time the total density probabili
*c* cd3x, the free equation (V50) is time and translation
invariant and admits as solutions plane waves and solit
Moreover, when Eq.~1! is considered in the momentum
space, in the presence of a harmonic confining potential,
nonlinearities describe the fermion or boson or intermed
nature of the particles and then the quantityuc(p)u2 defines
Fermi-Dirac, Bose-Einstein, or intermediate quantum sta
tical distributions.

In this paper, we consider the above mentioned NL
and, following the usual Wigner prescriptions of the pha
space quantum theory, we derive a quantum phase-s
transport equation that describes the dynamical evolutio
particles obeying an EIP. To our knowledge this is the fi
time that an EIP is introduced from the beginning into t
Schrödinger equation to derive the phase-space dynam
equation. This allows us to generalize, in a natural mode,
collisionless dynamics of particles in the presence of an E

The dynamical generalized Wigner equation and its s
tionary solutions are expanded in powers of\. To illustrate
quantitatively the relevance of the EIP introduced, we c
sider a pure fermionlike system in a harmonic confining p
tential and derive the semiclassical, extended fin
temperature Thomas-Fermi approximation up to the\2

order.

II. THE NONLINEAR WIGNER EQUATION

The phase-space representation of quantum mecha
was proposed by Wigner in 1932@19#, who studied the quan
tum corrections to the Boltzmann-Gibbs distribution with t
introduction of the so-called Wigner function:

f ~x,p,t !5NE d3y

~2p\!3
eipy/\c* S x2

y

2
,t DcS x1

y

2
,t D ,

~6!

whereN is the total number of particles in the system und
consideration. The Wigner functionf (x,p,t), even though
real, cannot be strictly interpreted as a distribution funct
in phase space, as the classical analog Boltzmann func
because it can have negative values. Nevertheless it ca
considered as an auxiliary function useful for calculati
thermodynamical averages, ground states of particles
tems, time evolution of the density profiles, and multifra
mentation in heavy-ion collisions@4–6,9,20#.

In the framework of the Wigner formalism, the coordina
particle densityr(x,t) can be obtained by means of an int
gration over the momentum

r~x,t !5
1

NE d3p f~x,p,t !, ~7!
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with the normalization taken as*r(x,t)d3x51 and the
quantum particle current defined in Eq.~4! can be expressed
as

j ~x,t !5~11kr!j
~0!

~x,t !, ~8!

wherej
(0)

(x,t) is the particle current when the EIP is abse
(k50)

j
~0!

~x,t !5
1

NE d3p
p

m
f ~x,p,t !. ~9!

With these ingredients we are able to derive the general
quantum Wigner equation in phase space. Following st
dard procedures, which we have reported explicitly in t
Appendix, the nonlinear Wigner equation in the presence
the EIP can be written as

S ]

]t
1

p

m
•¹xD f ~x,p,t !5

2

\FsinS 1

2
\n D @V~x!1W~r!#

1cosS 1

2
\n DW~r,j !G f ~x,p,t !,

~10!

where the triangle operator is defined asn5¹x•¹p with ¹x
acting only on the potentialsV(x), W(r), W(r,j ) and
¹p acting only onf (x,p,t). In the right-hand side of Eq.~10!
the sine and cosine functions must be interpreted as the
plicit expressions of their formal expansions in powers of\.

This equation describes the collisionless quantum dyn
ics of a nonrelativistic system of particles obeying the E
represents an extension of the standard linear Wigner e
tion @1–3#, and reduces to it when the EIP is absentk
50). We note that if the parameterk has negative values
Eq. ~10! describes the dynamics of particles that obey
exclusion principle in phase space. These are fermion
particles and, in a first approximation, can be considered
fermions because the EIP acting in the coordinate space
not allow the double site occupancy in phase space. Bec
we limit ourselves to discussing the processes where the
mentum changes slowly, the EIP in the coordinate spac
consistent with our semiclassical approach. This requirem
is equivalent to the condition that fast particles move in
slowly variable potential.

Equation~10! is highly nonlinear because the potentia
W(r) andW(r,j ) contain the densityr and the currentj
defined in terms of the Wigner distributionf (x,p,t) through
Eqs. ~7! and ~8!. The solution of Eq.~10! is not trivial and
can be integrated by means of self-consistent methods s
ing from a trial density function.

Integrating Eq.~10! in the momentum space, it is easy
verify that the continuity equation~5!, where the densityr is
given by Eq.~7! and the particle current is defined by E
~8!, is satisfied. Therefore the EIP modifies the particle c
rent but conserves the total number of particles. The prese
of the cosine term is a consequence of the different exp
sion of the quantum particle current, which contains the c
rective factor 11kr. This modification gives rise to the
imaginary potentialiW in the Schro¨dinger equation~1!. We
remark that, in comparison to the standard linear eq
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57 1397WIGNER EQUATION FOR PARTICLES OBEYING AN . . .
tion, the field of applicability of Eq.~10! is the same as tha
of the standard one, but should be more appropriate to s
physical effects where the many-body statistical effects
not negligible.

The expansion in powers of\ of the standard linea
Wigner equation has been considered in different phys
applications and the quantum corrections, as a perturba
of the classical results, have been analyzed; discussion
the applicability and the convergence of the expansion int\
powers are extensively considered in many papers@1,21–
24#.

III. EXPANSION IN POWERS OF \

We wish now to expand the nonlinear Eq.~10! in terms of
powers of\ and to derive the quantum corrections up to\2

order of the Wigner distribution, outlining the relevant e
fects due to the presence of the potentialsW(r) andW(r,j ).
We expand formally the Wigner functionf 5 f (x,p,t):

f 5 f 01\ f 11\2f 21O~\3!. ~11!

The particle densityr5r(x,t) and the particle currentj
5 j (x,t) can be expanded in\ powers, being defined in
terms of the Wigner function by means of Eqs.~7! and ~8!,
therefore we can write the following expressions:

r5r01\r11\2r21O~\3!, ~12!

j5 j01\ j11\2j21O~\3!. ~13!

If we consider Eq.~2!, the potentialW can be written as

W5\2M01O~\3!, ~14!

whereM0 is given by

M05
k

4mF ¹x
2r0

11kr0
1

22kr0

2r0

~¹xr0!2

~11kr0!2G . ~15!

In the following, the potentialW will be written asW
5\M/2, where the functionM can be expanded as

M5M01\M11\2M21O~\3!, ~16!

whereM0 , M1, andM2 are given by the following ex-
pressions:

M052k
1

r0
¹x•~r0j0

~0!
!, ~17!

M152k
1

r0
¹x•~r0j1

~0!
1r1j0

~0!
!1k

r1

r0
2
¹x•~r0j0

~0!
!,

~18!

M252k
1

r0
¹x•~r0j2

~0!
1r1j1

~0!
1r2j0

~0!
!1k

r1

r0
2
¹x•~r0j1

~0!

1r1j0
~0!

!1k
r2

r0
2
¹x•~r0j0

~0!
!2k

r1
2

r0
3
¹x•~r0j0

~0!
!. ~19!
dy
re

al
on
of

The functionsrn andjn
(0)

are, at\n order, the particle density
and the particle current, respectively, when the EIP is abs
and are given by

rn~x,t !5
1

NE d3p fn~x,p,t !, ~20!

jn
~0!~x,t !5

1

NE d3p
p

m
f n~x,p,t !. ~21!

Equation~10! can be expanded in series of\. Equalizing the
terms with the same order of\, we obtain a system of infi-
nite time-dependent coupled equations for the functio
f n(x,p,t). The first three equations of this system are

~D2M0! f 050, ~22!

~D2M0! f 15M1f 0 , ~23!

~D2M0! f 25M1f 11M2f 01nM0f 0

2 1
8 n2M0f 02 1

24 n3V f0 , ~24!

where the differential operatorD is the total time derivative
of the classical Boltzmann equation

D5
]

]t
1

p

m
•¹x2¹xV•¹p . ~25!

If the initial distribution is known, the system of couple
equations@note that Eqs.~22!–~24! are the first three# allows
one to obtain, univocally, the infinite functionsf n(x,p,t) and
therefore the functionf (x,p,t).

We note that also in the case where, as usual, the in
and boundary conditions are independent on\, the expan-
sion of the functionf in powers of\ contains all the powers
of \. Therefore, as will be seen later in detail, if we consid
an expansion in powers of\ of f , up to the second order, th
term in \ can be taken equal to zero. If we go above to t
second order, also odd powers occur in the formal serie
the Wigner function, contrary to the standard linear ca
where only even powers occur@1#. This difference is due to
the presence of the EIP potentialW in the cosine term of the
generalized Wigner equation~10!.

Integrating Eqs.~22!–~24! respect to the variablep, it is
possible to obtain the evolution equation for the first ord
momentarn of the function f n defined by Eq.~20!. The
evolution equations of the densitiesrn can also be obtained
directly from Eq.~10!, integrating with respect top and then
expandingr(x,t) in powers of\. It is easy to see that

]rn

]t
1¹x• jn50, ~26!

where jn is the current at\n order when the EIP is presen
and is given by

jn5 jn
~0!

1k (
m50

n

rmj
n2m

~0!
, ~27!

with jn
(0)

the current, given by Eq.~21!, at \n order when the
EIP is absent (k50).
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1398 57G. KANIADAKIS, A. LAVAGNO, AND P. QUARATI
Equation ~26! implies the conservation of the partic
number at any\ order separately. This justifies the expa
sion of the Wigner functionf to any \ order to study the
quantum effects as corrections of the classical distribut
The quantity r0 obeys the continuity equation~26! with
n50, the currentj0, given by Eq.~27! with n50, can be
written in the following simple expression:

j05~11kr0!j0
~0! . ~28!

Therefore, in the classical limit\→0, one obtains the par
ticle current j0 from the current j0

(0) multiplied by the
enhancing-inhibiting factor 11kr0 due to the EIP.

The presence of the EIP in the classical limit is a con
quence of the fact that this principle has been introducedad
hoc in the particle kinetics, as one can note from Eq.~4! of
the current paper. For this reason, Eq.~22! can be viewed as
a generalizedclassicalBoltzmann equation for particles em
bedded in the potentialM0 and obeying an EIP.

IV. EXTENDED FINITE TEMPERATURE
THOMAS-FERMI APPROXIMATION

Let us study explicitly thes stationary states where th
particle currentj and, as a consequence, the potentialW
5\M/2 introduced by the EIP, vanish.

Equations~22!–~24! are reduced to the following equa
tions:

D0f 050, ~29!

D0f 150, ~30!

D0f 25~nM02 1
24 n3V! f 0 , ~31!

where we have defined the differential operatorD0 as

D05
p

m
•¹x2¹xV•¹p . ~32!

The first two, Eqs.~29! and ~30!, imply only that the
quantitiesf 0(x,p)[ f 0(E) and f 1(x,p)[ f 1(E) are arbitrary
functions of the total energyE5p2/2m1V(x). When the
initial and boundary conditions are independent of\, the
function f 1 must be taken identically equal to zero and t
distribution f is given byf 5 f 01\2f 2; therefore, if the func-
tion f 0 is known, we can derive its quantum correctionf 2
solving Eq.~31!.

To describe the contribution of the EIP, we concentr
ourselves to a one-dimensional problem even if all the res
could be extended to the three-dimensional case. Equa
~31! can be easily integrated using, as independent variab
the coordinatex and the total energyE; its general solution
is given by
-

n.

-

e
lts
on
s,

f 2~x,E!5
1

24mF2V~x!
d2V~x!

dx2
2S dV~x!

dx D 2Gd3f 0~E!

dE3

2
1

24m

d2V~x!

dx2 F3
d2f 0~E!

dE2
12E

d3f 0~E!

dE3 G
1M0~x!

d f0~E!

dE
. ~33!

The function f 0(E) must be chosen to approximate at be
the exact stationary solution of the generalized Wigner eq
tion. In the following we consider a fermionlike system (k
521) and the EIP becomes an exclusion principle~EP!. For
this system, we choose the functionf 0(E)5 f TF(E) to be the
Thomas-Fermi~TF! distribution

f TF~E!5
1

eb~E2m!11
, ~34!

whereb51/kBT andm is the chemical potential fixed by th
normalization. Let us remark that this choice is not univoc
any function of the classical Hamiltonian that approxima
the exact stationary solution of the Wigner equation, can
appropriate. In literature, convolutions of the TF distributi
~34! calculated with smoothing algorithms or Gaussi
smoothing of the Wigner distribution function to improve th
convergence of the perturbative expansion~11! are consid-
ered@1,22#.

For a numerical evaluation of the quantum correcti
\2f 2(x,E) of the Thomas-Fermi distributionf 0(E), we con-
sider a system of fermions confined in a harmonic poten
V(x)5mv2x2/2. With this potential, the first term in the
square brackets of the Eq.~33! vanishes and the dependen
on the coordinate of the functionf 2(x,E) is contained only
in the last term of Eq.~33!, which is due only to the EP. If
we introduce the dimensionless variablese5bE and
z5x/ l wherel 5A2kBT/mv2, the f (z,e) given by Eq.~11!
can be written in the simple form

f ~z,e!5 f 0~e!2\2v2b2Q~e!2\2bM0~z! f 0~e!@12 f 0~e!#,
~35!

where

Q~e!5 1
24 f 0~e!@322e2~9214e! f 0~e!

16~124e! f 0~e!2112e f 0~e!3#. ~36!

Equation ~35! is just the finite temperature equilibrium
distribution of a system obeying an EP in a harmonic co
fining potential, with quantum corrections up to order\2. In
the following, we indicate withf TF5 f 0 the TF distribution
~34!, with f ETF5 f 02\2v2b2Q the extended TF distribution
with quantum corrections but without the EP and withf EP
the extended TF distribution with quantum corrections a
EP.

V. NUMERICAL RESULTS AND DISCUSSION

To make clear the relevance of the quantum correction
the unperturbedf TF , we consider explicitly the numerica
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57 1399WIGNER EQUATION FOR PARTICLES OBEYING AN . . .
values of the different terms in Eq.~35!. We choose a system
with N560 particles,v51, and the unitskB5\51.

The potentialM05M0(z) given by Eq.~15! is a crucial
quantity because it indicates the presence of the EP in
duced. It depends on the densityr0 at order\→0, which can
be calculated numerically, consistently with our approa
using Eq. ~7! and the expression of the functionf 05 f TF
introduced in Eq.~34!. The direct use of the explicit expres
sion of the wave function derived in@10# as a solution of the
NLSE with harmonic confining potential is not consiste
with the semiclassical extended finite temperature TF
proximation. Furthermore, it is not possible from this wa
function to compute analytically the Wigner function~6! and
the relative densityr. In Fig. 1 we report the functionM0(z)
for three different values of the parameterq5A2mkBT/N.

As one can notice from Eq.~15!, M0 contains the terms
(dr0 /dz)2 andd2r0 /dz2; as a consequence the behavior
M0 is very sensitive to the density in the region where
density changes its shape and curvature. When the de
profile is constant,M050. This is conceptually reasonab
because we have introduced an EP in the coordinate s
and this principle is more important in the region where th
is a change of the density function. In Fig. 1, we may n
that the functionM0 is repulsive for lowz values and attrac
tive for high z values~the curvature ofM0 changes where
M050).

To understand the physical action ofM0 or equivalently
the EP effects in the stationary case, it is helpful to consi
Fig. 2, where the differenceDr(z)5(1/N)*@ f EP2 f ETF#dp
between the spatial density with and without the EP is p
ted.

The presence of EP decreases the particle density in
region where the density is high and moves the partic
towards the low density region, according to the confin
harmonic potential, which is strongly repulsive in the highz
region. This is the reason for the presence of the peak at
z values. Obviously, the number of particles is conserved
that *Dr(z)dz50.

In Fig. 3, we report the normalized distribution
f TF , f ETF and f EP versus the total energyE, for q
50.135 fm21, T50.8c fm21, and at the fixed valuez50.2
~in this region of variability of the parameterq the physical
effect of the EP is more evident!. For these values ofz the
potential introduced by the EP is repulsive and the distri

FIG. 1. The functionM0 (fm21) vs the dimensionless variablez
at different values ofq given in fm21(kB5\51).
o-
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tion function f EP is depleted with respect to the one (f TF or
f ETF) without EP. Opposite effects are verified at higherz
values where the EP potential is attractive.

As we have observed above, the profile of thef EP is not
symmetric inz andp as it is, on the opposite, in the absen
of the EP~the distribution in this case depends only on t
energye) because the EP holds in the coordinate space o
The f ETF and the f EP distributions show quantum oscilla
tions, absent in the functionf TF ; these can be identified with
shell effects that vanish when averaged over the moment

VI. CONCLUSION

Within the Wigner scheme and prescriptions we have
rived the quantum, nonlinear Eq.~10!, having introduced a
generalized Pauli principle into the nonlinear Schro¨dinger
equation. Equation~10!, the main result of this work, de
scribes in phase space the quantum dynamics of a syste
particles obeying to the EIP applied in the coordinate spa
consistently with the semiclassical context~impulse slowly
variable! in which we have developed our approach. Beca
Eq. ~10! represents an extension of the linear Wigner eq
tion in the presence of the EIP, the dynamical equation
have derived can be applied in all the physical fields wh
the standard equation holds~from quantum cosmology to
condensed matter! in order to study physical problems o

FIG. 2. The quantityDr(z) vs the dimensionless variablez for
q50.135 fm21 andT50.8c fm21.

FIG. 3. The normalized distribution functionsf TF , f ETF, f EP vs
the dimensionless energye at z50.2 ~dimensionless!
andq50.135 fm21.
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systems in equilibrium or in nonequilibrium, where th
many-body statistical effects are relevant.

We have shown that at any order of\ the dynamical
equation satisfies a continuity equation where the EIP is c
tained in the particle current expressed in general form
Eq. ~27!. Finally, we have considered the stationary sta
and the correction up to\2 of the finite temperature Thomas
Fermi distribution. Equation~35! gives the equilibrium dis-
tribution in phase space up to order\2 of a system of fermi-
ons obeying the EP in a harmonic confining potential.

APPENDIX

In this appendix we derive explicitly the nonlinear Wign
equation~10!. It is convenient to introduce the potentia
U(x) andW(x), functions ofx, defined as
n-
y
s

U~x!5V~x!1W~r!, W~x!5W~r,j !. ~A1!

We use the operators¹¢ x and¹¢ p acting on the right side and
the operators¹¢ x and¹ª p acting on the left side. The startin
point is, as usual, the nonlinear Schro¨dinger equation for the
wave functionc(x,t):

i\
]

]t
c~x!52

\2

2m
¹¢ x

2c~x!1U~x!c~x!1 iW~x!c~x!.

~A2!

The above NLSE for the wave functionc(x2y/2) multiplied
by c* (x1y/2) can be written as
i\c* S x1
y

2D ]

]t
cS x2

y

2D52
\2

2m
c* S x1

y

2D¹¢ x2 y/2
2 cS x2

y

2D1c* S x1
y

2DUS x2
y

2DcS x2
y

2D
1 ic* S x1

y

2DWS x2
y

2DcS x2
y

2D . ~A3!

Analogously, the NLSE forc* (x1y/2) timesc(x2y/2) is given by

2 i\cS x2
y

2D ]

]t
c* S x1

y

2D52
\2

2m
cS x2

y

2D¹¢ x1y/2
2 c* S x1

y

2D1cS x2
y

2DUS x1
y

2Dc* S x1
y

2D
2 icS x2

y

2DWS x1
y

2Dc* S x1
y

2D . ~A4!

Subtracting Eq.~A4! from Eq. ~A3!, we obtain the following equation

i\
]

]t
c* S x1

y

2DcS x2
y

2D52
\2

2mFc* S x1
y

2D¹¢ x2y/2
2 cS x2

y

2D2cS x2
y

2D¹¢ x1y/2
2 c* S x1

y

2D G1FUS x2
y

2D2US x1
y

2D G
3c* S x1

y

2DcS x2
y

2D1 i FWS x2
y

2D2WS x1
y

2D Gc* S x1
y

2DcS x2
y

2D . ~A5!

Taking into account the relation

c* S x1
y

2D¹¢ x2y/2
2 cS x2

y

2D2cS x2
y

2D¹¢ x1y/2
2 c* S x1

y

2D5c* S x1
y

2D¹¢ x
2cS x2

y

2D2cS x2
y

2D¹¢ x
2c* S x1

y

2D
5¹¢ xFc* S x1

y

2D¹¢ xcS x2
y

2D2cS x2
y

2D¹¢ xc* S x1
y

2D G
522¹¢ xFc* S x1

y

2D¹¢ ycS x2
y

2D1cS x2
y

2D¹¢ yc* S x1
y

2D G
522¹¢ x¹¢ yc* S x1

y

2DcS x2
y

2D , ~A6!

and the identities

US x6
y

2D5U~x!expS 6
1

2
y¹ª xD , WS x6

y

2D5W~x!expS 6
1

2
y¹ª xD , ~A7!

Eq. ~A5! can be written in the form
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i\
]

]t
c* S x1

y

2DcS x2
y

2D5
\2

m
¹¢ x¹¢ yFc* S x1

y

2DcS x2
y

2D G2U~x!FexpS 1

2
y¹ª xD2expS 2

1

2
y¹ª xD Gc* S x1

y

2DcS x2
y

2D
1 iW~x!FexpS 1

2
y¹ª xD1expS 2

1

2
y¹ª xD Gc* S x1

y

2DcS x2
y

2D . ~A8!

Let us now multiply the first and second members of Eq.~A8! by (2p\)23exp(ipy/\) and integrating in the variabley, we
obtain the equation

]

]tE d3y

~2p\!3
expS i

\
pyDc* S x1

y

2DcS x2
y

2D

52
i\

m
¹¢ xE d3y

~2p\!3
expS i

\
pyD¹¢ yc* S x1

y

2DcS x2
y

2D2
1

i\
U~x!E d3y

~2p\!3
expS i

\
pyD FexpS 1

2
y¹ª xD

2expS 2
1

2
y¹ª xD Gc* S x1

y

2DcS x2
y

2D1
1

\
W~x!E d3y

~2p\!3
expS i

\
pyD FexpS 1

2
y¹ª xD

1expS 2
1

2
y¹ª xD Gc* S x1

y

2DcS x2
y

2D . ~A9!

If we take into account the relation

E d3y

~2p\!3
expS i

\
pyD¹¢ yc* S x1

y

2DcS x2
y

2D52E d3y

~2p\!3
¹¢ yFexpS i

\
pyD Gc* S x1

y

2DcS x2
y

2D

52E d3y

~2p\!3

i

\
p expS i

\
pyDc* S x1

y

2DcS x2
y

2D

52
i

\
pE d3y

~2p\!3
expS i

\
pyDc* S x1

y

2DcS x2
y

2D , ~A10!

and the identity

A~x!expS i

\
pyDexpS 1

2
y¹ª xDB~x,y!5A~x!(

n

1

n! FynexpS i

\
pyD G S 1

2
¹ª xD n

B~x,y!

5A~x!(
n

1

n! F ~2 i\¹¢ p!nexpS i

\
pyD G S 1

2
¹ª xD n

B~x,y!

5A~x!expS 2
i\

2
¹ª x¹¢ pDexpS i

\
pyDB~x,y!, ~A11!

Eq. ~A9! can be written as
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]

]tE d3y

~2p\!3
expS i

\
pyDc* S x1

y

2DcS x2
y

2D

52
p

m
¹¢ xE d3y

~2p\!3
expS i

\
pyDc* S x1

y

2DcS x2
y

2D1
2

\
U~x!

expS i\

2
¹ª x¹¢ pD2expS 2

i\

2
¹ª x¹¢ pD

2i

3E d3y

~2p\!3
expS i

\
pyDc* S x1

y

2DcS x2
y

2D1
2

\
W~x!

expS i\

2
¹ª x¹¢ pD1expS 2

i\

2
¹ª x¹¢ pD

2

3E d3y

~2p\!3
expS i

\
pyDc* S x1

y

2DcS x2
y

2D . ~A12!

Taking into account the Eulero expressions of the sine and cosine functions and remembering the definition of the
function given by Eq.~6!, Eq. ~A12! turns into

F ]

]t
1

p

m
¹¢ xG f ~ t,x,p!5

2

\FU~x!sinS \

2
¹ª x¹¢ pD1W~x!cosS \

2
¹ª x¹¢ pD G f ~ t,x,p!, ~A13!

which is just the nonlinear Wigner equation of Eq.~10! with the potentialU(x) defined by Eq.~A1!.
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