PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Wigner equation for particles obeying an exclusion-inclusion principle
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We consider a nonlinear Scliinger equation for particles obeying an exclusion-inclusion principle recently
proposed by us and derive, within the Wigner formalism, a generalized quantum phase-space transport equa-
tion. We calculate thé expansion of this equation and study the quantum corrections, up o’ theler, of
the finite temperature Thomas-Fermi phase-space distribution. The effects and the quantitative relevance of the
exclusion principle on the distribution function are considered for a system of fermionic particles in a harmonic
confining potential[S1063-651X98)10502-0

PACS numbdrs): 05.30.Fk, 03.65-w, 05.20-y

I. INTRODUCTION with

In recent years, great interest has been devoted to the use 52
of quantum-mechanical phase-space distributions in many W(p)=rk-—
areas of physics including quantum optics, statistical physics, 4m
nonlinear physics, chaotic systems, quantum cosmology, col-
lision processe$l—4]. In particular, in heavy-ion physics,
several approaches based on collective and transport models W(p,j)=—«
(as, for instance, the hydrodynamics model, the intranuclear
cascade model, the “hot spot” model and the molecular dy- o
namic$ are frequently employed to understand the relevanfnd where the quantum currgnis given by
phenomenology5-9].

The quantum many-body methods as the Hartree-Fock ) if
and the random phase approximations or the time dependent == 5 (L kp) (P Vb= YV,g™). (4)
Hartree-Fock theory are powerful algorithms and allow us to
explain many experimental results. However, the numerical . .
implementation to treat realistic situations with these theories  11€ Potentials(p) and\(p,]) are due to the presence
leads to excessively great computational times and effort®f the EIP ang, being functions of the particle density
For this reason and to obtain a clearer interpretation of th@(X.t)=|#(x,t)|* and of the quantum currefgx,t), intro-
results in many-body physics there is a rising interest in th&luceé complex nonlinearities in the Sctioger equatlgn.
semiclassical approach of quantum mechanics both for th&he real parametek (which has the dimensions df®,

The Wigner formulation of quantum statistical mechanicsfor <=0 the EIP is absent and E(L) becomes the standard
respects the rules of quantum mechanics such as Heisell€ar Schrdinger equation; for-1<xp<0 the EIP is re-
berg’s uncertainty principle and captures most features of théuced to an exclusion principle while fap>0 an inclusion
Boltzmann function, however, it does not contain quanturmPrinciple holds[10]. -
statistical or many-body effects due to the Pauli principle. Because the nonlinear potentials in the square bracket of
Because the Wigner equation, which describes the quantufed- (1) contain the EIP, the solution of E({) can reproduce
dynamics in the phase space, is deduced from the ‘Schr@n anyonlike particle behavior. The intermediate nature of
dinger equation, to derive a quantum transport equatiorposons and fermions can be taken into account in the value
which contains many-body or statistical effects, it is necesOf the parametek. In Ref.[10] it is shown that when the
sary to introduce these effects directly into the Sdimger ~ Potential is parabolic, the real part of the nonlinear potential
equation. is reduced toW(p)=—kEop+ (4xp+3k2p?)V(x). The

Recenﬂy, a new treatment to take into account many_bodﬁrst term of this potential appears in the Chern-Simons theo-
effects due to the Pauli principle has been considgtéf In  ries studying boson gasses withSdunction pairwise repul-
this reference, starting from a classical Markovian processsion or attractiorf11]; the term in the brackets is similar to
which obeys an exclusion-inclusion princiglglP) acting in ~ the one of the Eckhaus equation and describes a gas of
the coordinate space and using Nelson’s stochastic quantizROSOns interacting with a two-body attractive and three-body
tion method, the following nonlinear Schiinger equation repulsives-function interparticle potentigll 2]. The Eckhaus
(NLSE) has been derived: potential is often used in studies of superfluidity], super-

conductivity[ 14] and recently, of the Bose-Einstein conden-
Iy sation of trapped neutral atoms as, for instarftéé, 2°Na,

. ne_, . .
'ﬁﬁz_ﬁvx‘/H'Vlﬁ"‘[W(P)*"W(PvJ)]l//a (1) and 87Rb [15_1a
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The presence of the EIP does not change the usual intewith the normalization taken agp(x,t)d®x=1 and the
pretation of the functiop as the particle density probability quantum particle current defined in E¢) can be expressed
and of the vectoj as the particle current probability, related as
to each other through the continuity equation

. .(0)
Jx)=(1+«p)j (x1), 8
p .
ot +Vx]=0. () wherej (0)(x,t) is the particle current when the EIP is absent
(k=0)

The NLSE(1) conserves in time the total density probability 1
J¢* gd3x, the free equation\(=0) is time and translation i”(x,t)==| d® Bf( t) 9
: . . : . i N pP—T(X,p,1).
invariant and admits as solutions plane waves and solitons. m

Moreover, when Eq(1) is considered in the momentum
space, in the presence of a harmonic confining potential, th
nonlinearities describe the fermion or boson or intermediat
nature of the particles and then the quantiyp)|? defines
Fermi-Dirac, Bose-Einstein, or intermediate quantum statis
tical distributions.

In this paper, we consider the above mentioned NLSE

g\/ith these ingredients we are able to derive the generalized

uantum Wigner equation in phase space. Following stan-
dard procedures, which we have reported explicitly in the
Appendix, the nonlinear Wigner equation in the presence of
the EIP can be written as

and, following the usual Wigner prescriptions of the phase- _+B.VX> f(x,p,t)zz Sin(lﬁA)[V(x)+W(p)]
space quantum theory, we derive a quantum phase-space gt -m h 2

transport equation that describes the dynamical evolution of 1

particles obeying an EIP. To our knowledge this is the first +cos(—hA>W(p,j) f(x,p,t),
time that an EIP is introduced from the beginning into the 2

Schralinger equation to derive the phase-space dynamical (10
equation. This allows us to generalize, in a natural mode, the
collisionless dynamics of particles in the presence of an EIPwhere the triangle operator is defined/as=V,-V, with V,

The dynamical generalized Wigner equation and its staacting only on the potential¥(x), W(p), WI(p,j) and
tionary solutions are expanded in powers#ofTo illustrate  V, acting only onf(x,p,t). In the right-hand side of Eq10)
quantitatively the relevance of the EIP introduced, we conthe sine and cosine functions must be interpreted as the im-
sider a pure fermionlike system in a harmonic confining po-plicit expressions of their formal expansions in powers of
tential and derive the semiclassical, extended finite- This equation describes the collisionless quantum dynam-
temperature Thomas-Fermi approximation up to #ie ics of a nonrelativistic system of particles obeying the EIP,
order. represents an extension of the standard linear Wigner equa-
tion [1-3], and reduces to it when the EIP is absert (
=0). We note that if the parametar has negative values,
Eq. (10) describes the dynamics of particles that obey an

The phase-space representation of quantum mechaniexclusion principle in phase space. These are fermionlike
was proposed by Wigner in 19329], who studied the quan- particles and, in a first approximation, can be considered as
tum corrections to the Boltzmann-Gibbs distribution with thefermions because the EIP acting in the coordinate space does
introduction of the so-called Wigner function: not allow the double site occupancy in phase space. Because

we limit ourselves to discussing the processes where the mo-
mentum changes slowly, the EIP in the coordinate space is
, consistent with our semiclassical approach. This requirement
is equivalent to the condition that fast particles move in a
(6) slowly variable potential.
) ) ) Equation(10) is highly nonlinear because the potentials
whergN |s.the total number of parucles in the system underW(p) and W(p,j) contain the density and the currenj
consideration. The Wigner functiof(x,p,t), even though  gefined in terms of the Wigner distributidifx, p,t) through
_real, cannot be strictly mterpr_eted as a distribution functl(_)r\Eqs_(7) and (8). The solution of Eq(10) is not trivial and
in phase space, as the classical analog Boltzmann functiogap he integrated by means of self-consistent methods start-
because it can have negative values. Nevertheless it can pr?g from a trial density function.
considered as an auxiliary function useful for calculating Integrating Eq(10) in the momentum space, it is easy to
thermodynamical averages, ground states of particles Sygyify that the continuity equatiofs), where the density is
tems, time evolutlon of the_ (_jensny profiles, and multn‘rag-given by Eq.(7) and the particle current is defined by Eq.
mentation in heavy-ion collisionsi—6,9,20. _(8), is satisfied. Therefore the EIP modifies the particle cur-

In the framework of the Wigner formalism, the coordinate rent hyt conserves the total number of particles. The presence
particle densityp(x,t) can be obtained by means of an inte- ¢ the cosine term is a consequence of the different expres-
gration over the momentum sion of the quantum particle current, which contains the cor-

L rective factor - kp. This modification gives rise to the
_ 3 imaginary potential W in the Schrdinger equatior{1). We
p(x’t)_ﬁf d*pf(xp.b), ™ rem?irk t¥1§t, in comparison to thegstan?zlard linear equa-

II. THE NONLINEAR WIGNER EQUATION
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tion, the field of applicability of Eq(10) is the same as that The functionsp, andj’ are, ath" order, the particle density

of the standard one, but should be more appropriate to studynd the particle current, respectively, when the EIP is absent
physical effects where the many-body statistical effects argnq are given by

not negligible.
The expansion in powers aoi of the standard linear

Wigner equation has been considered in different physical

1
pn(X,t): Nj dgpfn(X,p,t), (20)

applications and the quantum corrections, as a perturbation

of the classical results, have been analyzed; discussions of
the applicability and the convergence of the expansionfinto

powers are extensively considered in many papé&rg@l—
24].
Ill. EXPANSION IN POWERS OF #

We wish now to expand the nonlinear EgQ) in terms of
powers off and to derive the quantum corrections upifo

order of the Wigner distribution, outlining the relevant ef-

fects due to the presence of the potentitlip) andW(p,j).
We expand formally the Wigner functioh= f(x,p,t):
The particle densityp=p(x,t) and the particle curreng
=j(x,t) can be expanded ik powers, being defined in
terms of the Wigner function by means of E¢%) and(8),
therefore we can write the following expressions:

p=pot+hpi+hip,+0O(h3), (12)

i=lothiyth%,+ O(R). (13

If we consider Eq(2), the potentiaW can be written as

W=7%2My+0(%3), (14
whereM, is given by
K| Vipo  2=kpy (Vypo)®
(15)

Mo=-— .
O am|1+xkpo - 2p0 (1+ Kpo)?
In the following, the potentialV will be written as W
=hMIJ2, where the function\ can be expanded as

M= Mo+hM;+h2M,+O(h3), (16)
where My, M4, and M, are given by the following ex-
pressions:

1 .(0)
Mo=—=k—V,-(palo ), (17)
Po
1 .(0) .(0) P1 .(0)
My==k—Vy-(poi1 *piio ) +&—=5Vx (poig ),
Po Po
(18

1 .(0) .(0) .(0) P1 .(0)
MZZ_KEVX'(POJZ Tpid1 tp2o )+K?Vx‘(ﬁ’ojl
0

2

.(0) P2 .(0) P1 .(0)

+paio )T k= Ve (poio )=k =V (polo )-
Po Po

(19

0 1) = = N 21

P =5] d°p-falx,p,0). (21)
Equation(10) can be expanded in seriesfof Equalizing the
terms with the same order @&f, we obtain a system of infi-
nite time-dependent coupled equations for the functions
f,(X,p,t). The first three equations of this system are

(D—Mg)fo=0, (22)
(D= M) f1=Mf,, (23

(D— Mg)fo= M1+ Myfo+ AMofg
— A2 Mfo— H A3V, (24)

where the differential operatdp is the total time derivative
of the classical Boltzmann equation

J p
LA

'DIE

(25

If the initial distribution is known, the system of coupled
equationgnote that Eqs(22)—(24) are the first thregallows
one to obtain, univocally, the infinite functiofig(x,p,t) and
therefore the functiorfi(x,p,t).

We note that also in the case where, as usual, the initial
and boundary conditions are independentfgrthe expan-
sion of the functiorf in powers off contains all the powers
of . Therefore, as will be seen later in detail, if we consider
an expansion in powers d&f of f, up to the second order, the
term in# can be taken equal to zero. If we go above to the
second order, also odd powers occur in the formal series of
the Wigner function, contrary to the standard linear case
where only even powers occltt]. This difference is due to
the presence of the EIP potentldl in the cosine term of the
generalized Wigner equatiqi0).

Integrating Eqs(22)—(24) respect to the variablp, it is
possible to obtain the evolution equation for the first order
momentap,, of the functionf, defined by Eq.(20). The
evolution equations of the densitipg can also be obtained
directly from Eq.(10), integrating with respect tp and then
expandingp(x,t) in powers off. It is easy to see that

d
Py =0,

p (26)

wherej,, is the current ak" order when the EIP is present
and is given by

n
in=in +x 2 pmiy (27)

with j;o) the current, given by Eq21), at#" order when the
EIP is absent £=0).
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Equation (26) implies the conservation of the particle
number at any: order separately. This justifies the expan-
sion of the Wigner functiorf to any# order to study the

guantum effects as corrections of the classical distribution.

The quantity p, obeys the continuity equatiof6) with
n=0, the current,, given by Eq.(27) with n=0, can be
written in the following simple expression:

jo=(1+kpo)i}y . (28)

Therefore, in the classical limfi— 0, one obtains the par-
ticle currentj, from the currentjgo) multiplied by the
enhancing-inhibiting factor * kpg due to the EIP.
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1 d2V(x) (dV(x)\2]d3fo(E)
1 olZV(x)[QdeO(E)Jr d3fo(E)
24m  gx2 | dE? dEs
dfo(E
+Mo(X) (;’(E) (33)

The functionfy(E) must be chosen to approximate at best
the exact stationary solution of the generalized Wigner equa-
tion. In the following we consider a fermionlike system (

1) and the EIP becomes an exclusion princi@®). For

this system, we choose the functibg(E) = f1(E) to be the

The presence of the EIP in the classical limit is a conseThomas-Ferm{TF) distribution

guence of the fact that this principle has been introdwd
hocin the particle kinetics, as one can note from E#). of
the current paper. For this reason, E2p) can be viewed as
a generalizealassicalBoltzmann equation for particles em-
bedded in the potentia\1, and obeying an EIP.

IV. EXTENDED FINITE TEMPERATURE
THOMAS-FERMI APPROXIMATION

Let us study explicitly thes stationary states where the
particle currentj and, as a consequence, the potental
=#.M/2 introduced by the EIP, vanish.

Equations(22)—(24) are reduced to the following equa-
tions:

Dofo=0, (29
Dof1=0, (30
Dof,=(AMo— HA3V)fy, (31
where we have defined the differential operafyras
Doz%-VX—VXV-Vp. (32

The first two, Egs.(29) and (30), imply only that the
quantitiesfo(x,p)=fy(E) andf,(x,p)=f,(E) are arbitrary
functions of the total energfE=p?%/2m+V(x). When the
initial and boundary conditions are independent/gfthe

fre(E) = o (34)

(E-m) 1'

whereB=1/kgT andu is the chemical potential fixed by the
normalization. Let us remark that this choice is not univocal,
any function of the classical Hamiltonian that approximates
the exact stationary solution of the Wigner equation, can be
appropriate. In literature, convolutions of the TF distribution
(34) calculated with smoothing algorithms or Gaussian
smoothing of the Wigner distribution function to improve the
convergence of the perturbative expansiat) are consid-
ered[1,22.

For a numerical evaluation of the quantum correction
#2f,(x,E) of the Thomas-Fermi distributiofy(E), we con-
sider a system of fermions confined in a harmonic potential
V(x) =mw?x?/2. With this potential, the first term in the
square brackets of the E(B3) vanishes and the dependence
on the coordinate of the functiofy(x,E) is contained only
in the last term of Eq(33), which is due only to the EP. If
we introduce the dimensionless variables=BE and
z=x/l wherel = \2kgT/mw?, the f(z,€) given by Eq.(11)
can be written in the simple form

f(z,€)="fo(€)~A%w?B?Q(€) ~1i?BMo(2) fo(€)[1— fO(g]SS

where

Q€)= 2 fo(€)[3—2€—(9—1de)fo(€)

+6(1—4e)fo(€)?+12efy(€)°]. (36)
Equation (35) is just the finite temperature equilibrium
distribution of a system obeying an EP in a harmonic con-

fining potential, with quantum corrections up to order In

function f; must be taken identically equal to zero and thethe following, we indicate withfrg=f, the TF distribution

distributionf is given byf = f,+#42f,; therefore, if the func-
tion fy is known, we can derive its quantum correctibn
solving Eq.(31).

(34), with fere=fo—%202B%Q the extended TF distribution
with quantum corrections but without the EP and with
the extended TF distribution with quantum corrections and

To describe the contribution of the EIP, we concentrategp.
ourselves to a one-dimensional problem even if all the results
could be extended to the three-dimensional case. Equation
(31) can be easily integrated using, as independent variables,
the coordinatex and the total energi; its general solution
is given by

V. NUMERICAL RESULTS AND DISCUSSION

To make clear the relevance of the quantum corrections of
the unperturbed 1z, we consider explicitly the numerical
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FIG. 1. The functiortM, (fm~1) vs the dimensionless variakte FIG. 2. The quantityd p(z) vs the dimensionless variabtefor
at different values ofy given in fm Y(kg=A=1). q=0.135fm ! andT=0.8 fm L.

values of the different terms in E¢85). We choose a system tion function fgp is depleted with respect to the ongf or

with N=60 particles,w=1, and the unitkg=%=1. ferp) without EP. Opposite effects are verified at higlzer
The potentialMy=My(z) given by Eq.(15) is a crucial values where the EP potential is attractive.

quantity because it indicates the presence of the EP intro- As we have observed above, the profile of fg is not

duced. It depends on the densityat order— 0, which can ~ Symmetric inz andp as it is, on the opposite, in the absence

be calculated numerically, consistently with our approachof the EP(the distribution in this case depends only on the

using Eg.(7) and the expression of the functidip=f¢ energye) because the EP holds in the coordinate space only.

introduced in Eq(34). The direct use of the explicit expres- The fere and thefgp distributions show quantum oscilla-

sion of the wave function derived [10] as a solution of the tions, absent in the functiofyr; these can be identified with

NLSE with harmonic confining potential is not consistentshell effects that vanish when averaged over the momentum.

with the semiclassical extended finite temperature TF ap-

proximation. Furthermore, it is not possible from this wave

function to compute analytically the Wigner functié®) and VI. CONCLUSION

the relative density. In Fig. 1 we report the functioM y(z) Within the Wigner scheme and prescriptions we have de-
for three different values of the parametgr y2mkgT/N. rived the quantum, nonlinear E¢L0), having introduced a
As one can notice from Eq15), M, contains the terms generalized Pauli principle into the nonlinear Sclinger
(dpo/d2)® andd?p,/dZ*; as a consequence the behavior of equation. Equatiorf10), the main result of this work, de-
My is very sensitive to the density in the region where thescribes in phase space the quantum dynamics of a system of
density changes its shape and curvature. When the densigarticles obeying to the EIP applied in the coordinate space,
profile is constantM=0. This is conceptually reasonable consistently with the semiclassical contéihpulse slowly
because we have introduced an EP in the coordinate spag@riablg in which we have developed our approach. Because
and this principle is more important in the region where thereeq. (10) represents an extension of the linear Wigner equa-
is a change of the density function. In Fig. 1, we may notetion in the presence of the EIP, the dynamical equation we
that the functiorM is repulsive for lowz values and attrac- have derived can be applied in all the physical fields where
tive for high z values(the curvature oM, changes where the standard equation holdfom quantum cosmology to

My=0). condensed matterin order to study physical problems of
To understand the physical action M, or equivalently
the EP effects in the stationary case, it is helpful to consider 1 :

Fig. 2, where the differencAp(z)=(1/N) [[fgp— fereldp
between the spatial density with and without the EP is plot-
ted.

The presence of EP decreases the particle density in the
region where the density is high and moves the particles
towards the low density region, according to the confining / \¢ E%I}? .

harmonic potential, which is strongly repulsive in the high 041 EP — T
region. This is the reason for the presence of the peak at high
z values. Obviously, the number of particles is conserved so 0.2 7
that [Ap(z)dz=0.

In Fig. 3, we report the normalized distributions 0 . ; 20

fre, fere and fgp versus the total energy, for q
=0.135fm !, T=0.8 fm~1, and at the fixed valug=0.2
(in this region of variability of the parameterthe physical FIG. 3. The normalized distribution functiofigg, ferr, fepvs
effect of the EP is more evidentFor these values af the  the dimensionless energye at z=0.2 (dimensionless
potential introduced by the EP is repulsive and the distribuandq=0.135 fmi L.
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systems in equilibrium or in nonequilibrium, where the UxX)=V(X)+W(p), WX)=W(p.,j). (A1)
many-body statistical effects are relevant.

We have shown that at any order #f the dynamical . R
equation satisfies a continuity equation where the EIP is corWe use the operato, andV,, acting on the right side and

tained in the particle current expressed in general form byhe operatord’, and V*p acting on the left side. The starting

Eq. (27). Finally, we have considered the stationary stateyoint is, as usual, the nonlinear Sctiger equation for the
and the correction up t? of the finite temperature Thomas- \ave functiong(x,t):

Fermi distribution. Equationi35) gives the equilibrium dis-
tribution in phase space up to ordef of a system of fermi- )
ons obeying the EP in a harmonic confining potential. ., d (. .

yng P =2 () = = =V 2p(X) + U000 + V0 $(X).
APPENDIX (A2)

In this appendix we derive explicitly the nonlinear Wigner
equation(10). It is convenient to introduce the potentials The above NLSE for the wave functiaf(x—y/2) multiplied
U(x) and W(x), functions ofx, defined as by ¢* (x+y/2) can be written as

y\ o ARG
X3 E'/’(X_E)‘_%

+ig*

i

y
X+§

y y
W( X— E) 1,0( X_E) . (A3)
Analogously, the NLSE fog/* (x+Yy/2) timesy(x—y/2) is given by

. y\ o y h? Y\ y
—|h¢(x— E)E(ﬂ*(x*‘ E - ﬁlﬁ(x— E)V§+y/21ﬁ* X+

2

y
X—E)U

4 I
x+2+¢ x+2¢

y
X+§

y

—iy 1/1*(X+§ . (A4)

y
X— E)W

Subtracting Eq(A4) from Eg. (A3), we obtain the following equation

y e A y y
l//(X—E):—ﬁ[df (X+§ V>2<—y/2¢(X—§ —l//(X—E
¥

i Ly xr ) V2, ot | X+ >
I(‘)tlrll X 2 X+y/2dl X 2

Y
2

y
X+ E)

y

y .
X+ = +i x+§) 1//(X— E)' (A5)

2

X W(x— %)—W v

Taking into account the relation

y
X+§

AR y
X+§ Vify/2l//

* —_—
¥ X=3

V?w( X %) - w( X %) Vi

A y y
- ¢( X— E) Viey* | X+ 5) =yrixts

y
X+§

> y
=V)( l;b* X+§

N y Yie
Vxlp(x_ §>_1,0 X— E) wa

y
X+§

y
X+§

> > Yy VAR
=— ZVX Vylﬂ<X— E X— E Vylﬁ*

Y ty

= -2V, V,

X+ %) lﬂ( X— %) , (AB)
and the identities
+y +1 vi +y +1 vi
u X5 =U(x)ex _Eny ., W X5 =W(x)ex;<_§yvx , (A7)

Eqg. (A5) can be written in the form
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d y y\ A%. . y y . 1 . y y
|ﬁa—t¢//* X+5 w(x— §>=EVXVY[¢* X+ 35 Yl x— —” U(x) exr{ yVX)—exr{—Eny”W X+ 5 w(x—z)
_ 1 . 1 . y y
+iW(X) ex;{iyvx +exr<—§yVX”¢* x+§ i X_E)' (A8)

Let us now multiply the first and second members of &B) by (27%) 3exp(py/#) and integrating in the variablg we
obtain the equation

J d3y i . y y
) (2mn)* p(%py)w X+5)¢(X_§)

i [ dYy p(i )
—_EVXJ Pl vy

x+ 2]

1 .
ex Eny

y\ 1 d3y i
. 5) - WU(X)I (zwh)?'eXp(gpy)

+EW(X)J &y ex;{i— ) eX[{E 6)

| "

If we take into account the relation

d3y [ .
f(zﬂb)sex gpy Vo™ | x+ 5

R4 d_SV[ p(‘_ ” x

X 2>_ f(Zﬂ'ﬁ)SVy AP v

——J &y ! exp(i— )*x+
(Zwﬁ)sﬁp 7YY

i
pJ (2ah)? © F{%py)lﬁ*

y
lﬂ( X— 5) : (A10)
and the identity

i 1 [ i 1_\n
A(X)exp(gpy> exp( ~yV, )B(x y)=A(X)§ o y“exp(gpymiw) B(X,Y)

. i 1.\"
=AY —_( IﬁVp)”exp<gpy”(5Vx> B(x,y)

in .
=A(x)exp{ - I?VXVP) ex;{;i—py) B(x,y), (A11)

Eqg. (A9) can be written as
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g d i y y
- _ * z _Z
at (zwﬁ)Seer(ﬁpy)"b TR 2)
|ﬁ€ﬁ Iﬁﬁ -
_po ([ dYy LNy y|, 2, TR 2] TR TN
=T mvx (277—h)3€>< ZPY || X+ S| x= 5+ 7 UK >
s s
jdsy i oy | 2 exp 5 ViVp | +exp — 5 ViV,
X (27rh)3ex 7Py o x+§ U X=35 +%W(x) 5
et e 3o
X | ———=exp + I x+ S|l x— = Al2

Taking into account the Eulero expressions of the sine and cosine functions and remembering the definition of the Wigner
function given by Eq(6), Eq. (A12) turns into

J
.k
gt m

- 2 he o he o
Vx}f(t,x,p)z 7 U(x)sin(EVxVp +W(x)cos<§VXVp”f(t,x,p), (A13)

which is just the nonlinear Wigner equation of Ed0) with the potentialu (x) defined by Eq(A1l).
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